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1. We discussed ways to use the CDF of a distribution to get
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2. Without running more trials (or gathering more data), we
can increase certainty by widening our bounds

3. But we weren’t very concrete about how this relates to H0
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Back to our experiment (flipping a coin)

mu, sigma = normal_approx(1000, 0.5)

err = 0.05 # Our comfort with a type 1 error: 5%

lower, upper = norm_two_sided_bounds((1 - err), mu, sigma)
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Interpreting the results

Assuming the coin is fair

1. Just a 5% chance that the number of heads we’d see lies
outside this range

2. Have we proven anything?

3. Are you convinced?

4. If you’re wrong you lose a limb, are you convinced now?
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Interpreting the results

But we got to choose the significance! How seriously should we
take these results?

1. It is important that you communicate why you feel these
results are valid.

2. It is very easy to lie with statistics:

2.1 Imagine if H0 was not in the 95% range, but in the 96%
range

2.2 Why is 5% special?
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p-Values

Let’s say we flipped a coin 1000 times (instead of having a
distribution of such experiments)

1. We observe 530 heads, this would give us a p-value of 6.2%

2. We observe 532 heads, this would give us a p-value of 4.6%

3. (The function for computing the p-values is in the
notebook file)
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Many Machine Learning problems take the following form:

minimizeθ

m∑
i=1

l(hθ(x
(i)), y(i))

We’ve now looked at some ls and an h.
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1. We looked at a linear regression

2. We ‘fit’ this linear regression to our dataset
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A wild h appears

Linear Regressions aren’t the only possible hypothesis function!
We’ve also got:

1. Decision Trees : 20-questions, the ML technique

2. Polynomials : For when a straight line isn’t cutting it

3. Neural networks : What if we misunderstood neurons
and made it a program?

4. Arbitrary Programs: What is computers wrote the
programs?
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Do you realize?

A learning problem is said to be realizable if the true function
exists within the learning problem’s hypothesis space

1. This means that the more expressive the hypothesis space
(polynomials vs straight lines) the more likely that the
problem is realizable.

2. What’s the downside?

3. Occam’s1 Razor is a data-scientist’s best friend

1

Also written as ‘Ockham’ or ‘Ocham’
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Decision Trees

We can view our tagged dataset (values of (x, tag)), as standing
in for values of (x, f(x)).

1. As with the linear regression the goal is to find an h that
approximates f .

2. But instead of a regression, we want a tree of decisions.

3. What’s a decision?
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Decisions! Decisions!

Each decision has two parts:

1. Input : An object2 event/situation, that is described by a
set of attributes (or features)

2. Output: A prediction of the ‘value’ based on the input

3. The boolean case (yes/no) is easy to visualize, but the
values do not have to be discrete.

2not in the OO sense
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Consider

You are asked to identify an animal based on a set of features
(number of legs, weight, number of eyes, etc.)

1. The challenge is that the order of questions can matter!

2. You’ll want the ’most significant’ question first.

3. Unfortunately, it can be very expensive(!!) to find the most
significant question.
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1. Decision nodes: Specifies a test on some attribute
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Small example:

We want to determine whether someone has ever seen an
episode of Sponge Bob:

1. Are they older than 70: no.

2. Are they older then 40: if yes...

2.1 Do they have kids: if yes, yes.
2.2 no.

3. Are they older than 4: yes.

4. Do they have older siblings: yes.

5. no.
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Oof

Even for such a small example, it starts getting unwieldy.

1. Luckily, libraries will be able to display trees nicely

2. For many trees it’s not necessarily true that each ‘decision’,
will have a meaningful-in-English question associated with
it.
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A prettier example

Should we wait for a table?



How many are there?

Decision Trees can encode arbitrary boolean functions.

1. Each attribute can be 0/1

1.1 So our input space is 2N

2. Each decision value can be 0/1, for each possible
combination of features!

2.1 So our hypothesis space is 22
N
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Basic Algorithm

The goal is to find a small tree that correctly predicts the
training samples

1. Choose the “most significant” attribute

2. Once you make a choice for “most significant”, you don’t
backtrack (greedy)

3. Now you’ve split your dataset, repeat the process for each
subset.
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Significant?

How do we pick the “most significant”?

1. We can’t always :(

2. We want to try and maximize information gain

3. For this class: let the libraries do the work for you.
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Thanks for your time!

:)


