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Abstract
We classify data quality problems that are addressed by data cleaning and provide an overview of the main
solution approaches. Data cleaning is especially required when integrating heterogeneous data sources and
should be addressed together with schema-related data transformations. In data warehouses, data cleaning is
a major part of the so-called ETL process. We also discuss current tool support for data cleaning.

1 Introduction
Data cleaning, also called data cleansing or scrubbing, deals with detecting and removing errors and
inconsistencies from data in order to improve the quality of data. Data quality problems are present in single
data collections, such as files and databases, e.g., due to misspellings during data entry, missing information
or other invalid data. When multiple data sources need to be integrated, e.g., in data warehouses, federated
database systems or global web-based information systems, the need for data cleaning increases
significantly. This is because the sources often contain redundant data in different representations. In order to
provide access to accurate and consistent data, consolidation of different data representations and elimination
of duplicate information become necessary.
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Figure 1. Steps of building a data warehouse: the ETL process

Data warehouses [6][16] require and provide extensive support for data cleaning. They load and
continuously refresh huge amounts of data from a variety of sources so the probability that some of the
sources contain “dirty data” is high. Furthermore, data warehouses are used for decision making, so that the
correctness of their data is vital to avoid wrong conclusions. For instance, duplicated or missing information
will produce incorrect or misleading statistics (“garbage in, garbage out”). Due to the wide range of possible

                                                  
∗  This work was performed while on leave at Microsoft Research, Redmond, WA.



2

data inconsistencies and the sheer data volume, data cleaning is considered to be one of the biggest problems
in data warehousing. During the so-called ETL process (extraction, transformation, loading), illustrated in
Fig. 1, further data transformations deal with schema/data translation and integration, and with filtering and
aggregating data to be stored in the warehouse. As indicated in Fig. 1, all data cleaning is typically
performed in a separate data staging area before loading the transformed data into the warehouse. A large
number of tools of varying functionality is available to support these tasks, but often a significant portion of
the cleaning and transformation work has to be done manually or by low-level programs that are difficult to
write and maintain.

Federated database systems and web-based information systems face data transformation steps similar to
those of data warehouses. In particular, there is typically a wrapper per data source for extraction and a
mediator for integration [32][31]. So far, these systems provide only limited support for data cleaning,
focusing instead on data transformations for schema translation and schema integration. Data is not
preintegrated as for data warehouses but needs to be extracted from multiple sources, transformed and
combined during query runtime. The corresponding communication and processing delays can be significant,
making it difficult to achieve acceptable response times. The effort needed for data cleaning during
extraction and integration will further increase response times but is mandatory to achieve useful query
results.

A data cleaning approach should satisfy several requirements. First of all, it should detect and remove all
major errors and inconsistencies both in individual data sources and when integrating multiple sources. The
approach should be supported by tools to limit manual inspection and programming effort and be extensible
to easily cover additional sources. Furthermore, data cleaning should not be performed in isolation but
together with schema-related data transformations based on comprehensive metadata. Mapping functions for
data cleaning and other data transformations should be specified in a declarative way and be reusable for
other data sources as well as for query processing. Especially for data warehouses, a workflow infrastructure
should be supported to execute all data transformation steps for multiple sources and large data sets in a
reliable and efficient way.

While a huge body of research deals with schema translation and schema integration, data cleaning has
received only little attention in the research community. A number of authors focussed on the problem of
duplicate identification and elimination, e.g., [11][12][15][19][22][23]. Some research groups concentrate on
general problems not limited but relevant to data cleaning, such as special data mining approaches [30][29],
and data transformations based on schema matching [1][21]. More recently, several research efforts propose
and investigate a more comprehensive and uniform treatment of data cleaning covering several
transformation phases, specific operators and their implementation [11][19][25].

In this paper we provide an overview of the problems to be addressed by data cleaning and their solution. In
the next section we present a classification of the problems. Section 3 discusses the main cleaning
approaches used in available tools and the research literature. Section 4 gives an overview of commercial
tools for data cleaning, including ETL tools.  Section 5 is the conclusion.

2 Data cleaning problems
This section classifies the major data quality problems to be solved by data cleaning and data transformation.
As we will see, these problems are closely related and should thus be treated in a uniform way. Data
transformations [26] are needed to support any changes in the structure, representation or content of data.
These transformations become necessary in many situations, e.g., to deal with schema evolution, migrating a
legacy system to a new information system, or when multiple data sources are to be integrated.

As shown in Fig. 2 we roughly distinguish between single-source and multi-source problems and between
schema- and instance-related problems. Schema-level problems of course are also reflected in the instances;
they can be addressed at the schema level by an improved schema design (schema evolution), schema
translation and schema integration. Instance-level problems, on the other hand, refer to errors and
inconsistencies in the actual data contents which are not visible at the schema level. They are the primary
focus of data cleaning. Fig. 2 also indicates some typical problems for the various cases. While not shown in
Fig. 2, the single-source problems occur (with increased likelihood) in the multi-source case, too, besides
specific multi-source problems.
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Schema Level
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(Data entry errors)
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Schema Level Instance Level

Data Quality Problems
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…

- Inconsistent aggregating
- Inconsistent timing 
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(Heterogeneous
data models and
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- Uniqueness
- Referential integrity
…
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- Redundancy/duplicates
- Contradictory values
…

Figure 2. Classification of data quality problems in data sources

2.1 Single-source problems

The data quality of a source largely depends on the degree to which it is governed by schema and integrity
constraints controlling permissable data values.  For sources without schema, such as files, there are few
restrictions on what data can be entered and stored, giving rise to a high probability of errors and
inconsistencies. Database systems, on the other hand, enforce restrictions of a specific data model (e.g., the
relational approach requires simple attribute values, referential integrity, etc.) as well as application-specific
integrity constraints. Schema-related data quality problems thus occur because of the lack of appropriate
model-specific or application-specific integrity constraints, e.g., due to data model limitations or poor
schema design, or because only a few integrity constraints were defined to limit the overhead for integrity
control. Instance-specific problems relate to errors and inconsistencies that cannot be prevented at the
schema level (e.g., misspellings).

Scope/Problem Dirty Data Reasons/Remarks
Attribute Illegal values bdate=30.13.70 values outside of domain range
Record Violated attribute

dependencies
age=22, bdate=12.02.70 age = (current date – birth date)

should hold
Record
type

Uniqueness
violation

emp1=(name=”John Smith”, SSN=”123456”)
emp2=(name=”Peter Miller”, SSN=”123456”)

uniqueness  for SSN (social security
number) violated

Source Referential
integrity violation

emp=(name=”John Smith”, deptno=127) referenced department (127) not defined

Table 1. Examples for single-source problems at schema level (violated integrity constraints)

For both schema- and instance-level problems we can differentiate different problem scopes: attribute (field),
record, record type and source; examples for the various cases are shown in Tables 1 and 2. Note that
uniqueness constraints specified at the schema level do not prevent duplicated instances, e.g., if information
on the same real world entity is entered twice with different attribute values (see example in Table 2).

Scope/Problem Dirty Data Reasons/Remarks
Missing values phone=9999-999999 unavailable values during data entry

(dummy values or null)
Misspellings city=”Liipzig” usually typos, phonetic errors
Cryptic values,
Abbreviations

experience=”B”;
occupation=”DB Prog.”

Embedded values name=”J. Smith 12.02.70 New York” multiple values entered in one attribute
(e.g. in a free-form field)

Attribute

Misfielded values city=”Germany”
Record Violated attribute

dependencies
city=”Redmond”, zip=77777 city and zip code should correspond

Word
transpositions

name1= “J. Smith”, name2=”Miller P.” usually in a free-form field

Duplicated records emp1=(name=”John Smith”,...);
emp2=(name=”J. Smith”,...)

same employee represented twice due to
some data entry errors

Record
type

Contradicting
records

emp1=(name=”John Smith”, bdate=12.02.70);
emp2=(name=”John Smith”, bdate=12.12.70)

the same real world entity is described by
different values

Source Wrong references emp=(name=”John Smith”, deptno=17) referenced department (17) is defined but
wrong

Table 2. Examples for single-source problems at instance level
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Given that cleaning data sources is an expensive process, preventing dirty data to be entered is obviously an
important step to reduce the cleaning problem. This requires an appropriate design of the database schema
and integrity constraints as well as of data entry applications. Also, the discovery of data cleaning rules
during warehouse design can suggest improvements to the constraints enforced by existing schemas.

2.2 Multi-source problems

The problems present in single sources are aggravated when multiple sources need to be integrated. Each
source may contain dirty data and the data in the sources may be represented differently, overlap or
contradict. This is because the sources are typically developed, deployed and maintained independently to
serve specific needs. This results in a large degree of heterogeneity w.r.t. data management systems, data
models, schema designs and the actual data.

At the schema level, data model and schema design differences are to be addressed by the steps of schema
translation and schema integration, respectively. The main problems w.r.t. schema design are naming and
structural conflicts [2][24][17]. Naming conflicts arise when the same name is used for different objects
(homonyms) or different names are used for the same object (synonyms). Structural conflicts occur in many
variations and refer to different representations of the same object in different sources, e.g., attribute vs. table
representation, different component structure, different data types, different integrity constraints, etc.

In addition to schema-level conflicts, many conflicts appear only at the instance level (data conflicts). All
problems from the single-source case can occur with different representations in different sources (e.g.,
duplicated records, contradicting records,…). Furthermore, even when there are the same attribute names and
data types, there may be different value representations (e.g., for marital status) or different interpretation of
the values (e.g., measurement units Dollar vs. Euro) across sources. Moreover, information in the sources
may be provided at different aggregation levels (e.g., sales per product vs. sales per product group) or refer
to different points in time (e.g. current sales as of yesterday for source 1 vs. as of last week for source 2).

A main problem for cleaning data from multiple sources is to identify overlapping data, in particular
matching records referring to the same real-world entity (e.g., customer). This problem is also referred to as
the object identity problem [11], duplicate elimination or the merge/purge problem [15]. Frequently, the
information is only partially redundant and the sources may complement each other by providing additional
information about an entity. Thus duplicate information should be purged out and complementing
information should be consolidated and merged in order to achieve a consistent view of real world entities.
Customer (source 1)
CID Name Street City Sex
 11 Kristen Smith 2 Hurley Pl South Fork, MN 48503 0
 24 Christian Smith Hurley St 2 S Fork MN 1

Client (source 2)
Cno LastName FirstName Gender Address Phone/Fax
24 Smith Christoph M 23 Harley St, Chicago

IL, 60633-2394
333-222-6542 /
333-222-6599

493 Smith Kris L. F 2 Hurley Place, South
Fork MN, 48503-5998

444-555-6666

Customers (integrated target with cleaned data)
No LName FName Gender Street City State ZIP Phone Fax CID Cno
1 Smith Kristen L. F 2 Hurley

Place
South
Fork

MN 48503-
5998

444-555-
6666

11 493

2 Smith Christian M 2 Hurley
Place

South
Fork

MN 48503-
5998

24

3 Smith Christoph M 23 Harley
Street

Chicago IL 60633-
2394

333-222-
6542

333-222-
6599

24

Figure 3. Examples of multi-source problems at schema and instance level

The two sources in the example of Fig. 3 are both in relational format but exhibit schema and data conflicts.
At the schema level, there are name conflicts (synonyms Customer/Client, Cid/Cno, Sex/Gender) and
structural conflicts (different representations for names and addresses). At the instance level, we note that
there are different gender representations (“0”/”1” vs. “F”/”M”) and presumably a duplicate record (Kristen
Smith). The latter observation also reveals that while Cid/Cno are both source-specific identifiers, their
contents are not comparable between the sources; different numbers (11/493) may refer to the same person
while different persons can have the same number (24). Solving these problems requires both schema
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integration and data cleaning; the third table shows a possible solution. Note that the schema conflicts should
be resolved first to allow data cleaning, in particular detection of duplicates based on a uniform
representation of names and addresses, and  matching of the Gender/Sex values.

3 Data cleaning approaches
In general, data cleaning involves several phases

•  Data analysis: In order to detect which kinds of  errors and inconsistencies are to be removed, a detailed
data analysis is required. In addition to a manual inspection of the data or data samples, analysis
programs should be used to gain metadata about the data properties and detect data quality problems.

•  Definition of transformation workflow and mapping rules: Depending on the number of data sources,
their degree of heterogeneity and the “dirtyness” of the data, a large number of data transformation and
cleaning steps may have to be executed. Sometime, a schema translation is used  to map sources to a
common data model; for data warehouses, typically a relational representation is used. Early data
cleaning steps can correct single-source instance problems and prepare the data for integration. Later
steps deal with schema/data integration and cleaning multi-source instance problems, e.g., duplicates.
For data warehousing, the control and data flow for these transformation and cleaning steps should be
specified within a workflow that defines the ETL process (Fig. 1).

The schema-related data transformations as well as the cleaning steps should be specified by a
declarative query and mapping language as far as possible, to enable automatic generation of the
transformation code. In addition, it should be possible to invoke user-written cleaning code and special-
purpose tools during a data transformation workflow. The transformation steps may request user
feedback on data instances for which they have no built-in cleaning logic.

•  Verification: The correctness and effectiveness of a transformation workflow and the transformation
definitions should be tested and evaluated, e.g., on a sample or copy of the source data, to improve the
definitions if necessary. Multiple iterations of the analysis, design and verification steps may be needed,
e.g., since some errors only become apparent after applying some transformations.

•  Transformation: Execution of the transformation steps either by running the ETL workflow for loading
and refreshing a data warehouse or during answering queries on multiple sources.

•  Backflow of cleaned data: After (single-source) errors are removed, the cleaned data should also replace
the dirty data in the original sources in order to give legacy applications the improved data too and to
avoid redoing the cleaning work for future data extractions. For data warehousing, the cleaned data is
available from the data staging area (Fig. 1).

The transformation process obviously requires a large amount of metadata, such as schemas, instance-level
data characteristics, transformation mappings, workflow definitions, etc. For consistency, flexibility and ease
of reuse, this metadata should be maintained in a DBMS-based repository [4]. To support data quality,
detailed information about the transformation process is to be recorded, both in the repository and in the
transformed instances, in particular information about the completeness and freshness of source data and
lineage information about the origin of transformed objects and the changes applied to them. For instance, in
Fig. 3, the derived table Customers contains the attributes CID and Cno, allowing one to trace back the
source records.

In the following we describe in more detail possible approaches for data analysis (conflict detection),
transformation definition and conflict resolution. For approaches to schema translation and schema
integration, we refer to the literature as these problems have extensively been studied and described
[2][24][26]. Name conflicts are typically resolved by renaming; structural conflicts require a partial
restructuring and merging of the input schemas.

3.1 Data analysis

Metadata reflected in schemas is typically insufficient to assess the data quality of a source, especially if only
a few integrity constraints are enforced. It is thus important to analyse the actual instances to obtain real
(reengineered) metadata on data characteristics or unusual value patterns. This metadata helps finding data
quality problems. Moreover, it can effectively contribute to identify attribute correspondences between
source schemas (schema matching), based on which automatic data transformations can be derived [20][9].
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There are two related approaches for data analysis, data profiling and data mining. Data profiling focusses
on the instance analysis of individual attributes. It derives information such as the data type, length, value
range, discrete values and their frequency, variance, uniqueness, occurrence of null values, typical string
pattern (e.g., for phone numbers), etc., providing an exact view of various quality aspects of the attribute.
Table 3 shows examples of how this metadata can help detecting data quality problems.

Problems Metadata Examples/Heuristics
cardinality e.g., cardinality (gender) > 2 indicates problem
max, min max, min should not be outside of permissible range

Illegal values

variance, deviation variance, deviation of statistical values should not be higher than
threshold

Misspellings attribute values sorting on values often brings misspelled values next to correct
values

null values percentage/number of null valuesMissing values
attribute values + default values presence of default value may indicate real value is missing

Varying value
representations

attribute values comparing attribute value set of a column of one table against that
of a column of another table

cardinality + uniqueness attribute cardinality = # rows should holdDuplicates
attribute values sorting values by number of occurrences; more than 1 occurrence

indicates duplicates
Table 3. Examples for the use of reengineered metadata to address data quality problems

Data mining helps discover specific data patterns in large data sets, e.g., relationships holding between
several attributes. This is the focus of so-called descriptive data mining models including clustering,
summarization, association discovery and sequence discovery [10]. As shown in [28], integrity constraints
among attributes such as functional dependencies or application-specific “business rules” can be derived,
which can be used to complete missing values, correct illegal values and identify duplicate records across
data sources. For example, an association rule with high confidence can hint to data quality problems in
instances violating this rule. So a confidence of 99% for rule “total=quantity*unit price” indicates that 1% of
the records do not comply and may require closer examination.

3.2 Defining data transformations

The data transformation process typically consists of multiple steps where each step may perform schema-
and instance-related transformations (mappings). To allow a data transformation and cleaning system to
generate transformation code and thus to reduce the amount of self-programming it is necessary to specify
the required transformations in an appropriate language, e.g., supported by a graphical user interface.
Various ETL tools (see Section 4) offer this functionality by supporting proprietary rule languages. A more
general and flexible approach is the use of the standard query language SQL to perform the data
transformations and utilize the possibility of application-specific language extensions, in particular user-
defined functions (UDFs) supported in SQL:99 [13][14]. UDFs can be implemented in SQL or a general-
purpose programming language with embedded SQL statements. They allow implementing a wide range of
data transformations and support easy reuse for different transformation and query processing tasks.
Furthermore, their execution by the DBMS can reduce data access cost and thus improve performance.
Finally, UDFs are part of the SQL:99 standard and should (eventually) be portable across many platforms
and DBMSs.

CREATE VIEW Customer2 (LName, FName, Gender, Street, City, State, ZIP, CID) AS
SELECT  LastNameExtract (Name), FirstNameExtract (Name), Sex, Street, CityExtract (City),
                StateExtract (City), ZIPExtract (City), CID
FROM Customer

Figure 4. Example of  transformation step definition

Fig. 4 shows a transformation step specified in SQL:99. The example refers to Fig. 3 and covers part of the
necessary data transformations to be applied to the first source. The transformation defines a view on which
further mappings can be performed. The transformation performs a schema restructuring with additional
attributes in the view obtained by splitting the name and address attributes of the source. The required data
extractions are achieved by UDFs (shown in boldface). The UDF implementations can contain cleaning
logic, e.g., to remove misspellings in city names or provide missing zip codes.

UDFs may still imply a substantial implementation effort and do not support all necessary schema
transformations. In particular, simple and frequently needed functions such as attribute splitting or merging
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are not generically supported but need often to be re-implemented in application-specific variations (see
specific extract functions in Fig. 4). More complex schema restructurings (e.g., folding and unfolding of
attributes) are not supported at all. To generically support schema-related transformations, language
extensions such as the SchemaSQL proposal are required [18]. Data cleaning at the instance level can also
benefit from special language extensions such as a Match operator supporting “approximate joins” (see
below). System support for such powerful operators can greatly simplify the programming effort for data
transformations and improve performance. Some current research efforts on data cleaning are investigating
the usefulness and implementation of such query language extensions [11][25].

3.3 Conflict resolution

A set of transformation steps has to be specified and executed to resolve the various schema- and instance-
level data quality problems that are reflected in the data sources at hand. Several types of transformations are
to be performed on the individual data sources in order to deal with single-source problems and to prepare
for integration with other sources. In addition to a possible schema translation, these preparatory steps
typically include:

•  Extracting values from free-form attributes (attribute split): Free-form attributes often capture multiple
individual values that should be extracted to achieve a more precise representation and support further
cleaning steps such as instance matching and duplicate elimination. Typical examples are name and
address fields (Table 2, Fig. 3, Fig. 4). Required transformations in this step are reordering of values
within a field to deal with word transpositions, and value extraction for attribute splitting.

•  Validation and correction: This step examines each source instance for data entry errors and tries to
correct them automatically as far as possible. Spell checking based on dictionary lookup is useful for
identifying and correcting misspellings. Furthermore, dictionaries on geographic names and zip codes
help to correct address data. Attribute dependencies (birthdate – age, total price – unit price / quantity,
city – phone area code,…) can be utilized to detect problems and substitute missing values or correct
wrong values.

•  Standardization: To facilitate instance matching and integration, attribute values should be converted to
a consistent and uniform format. For example, date and time entries should be brought into a specific
format; names and other string data should be converted to either upper or lower case, etc. Text data may
be condensed and unified by performing stemming, removing prefixes, suffixes, and stop words.
Furthermore, abbreviations and encoding schemes should consistently be resolved by consulting special
synonym dictionaries or applying predefined conversion rules.

Dealing with multi-source problems requires restructuring of schemas to achieve a schema integration,
including steps such as splitting, merging, folding and unfolding of attributes and tables. At the instance
level, conflicting representations need to be resolved and overlapping data must to be dealt with. The
duplicate elimination task is typically performed after most other transformation and cleaning steps,
especially after having cleaned single-source errors and conflicting representations. It is performed either on
two cleaned sources at a time or on a single already integrated data set. Duplicate elimination requires to first
identify (i.e. match) similar records concerning the same real world entity. In a second step, similar records
are merged into one record containing all relevant attributes without redundancy. Furthermore, redundant
records are purged. In the following we discuss the key problem of instance matching. More details on the
subject are provided elsewhere in this issue [22].   

In the simplest case, there is an identifying attribute or attribute combination per record that can be used for
matching records, e.g., if different sources share the same primary key or if there are other common unique
attributes. Instance matching between different sources is then achieved by a standard equi-join on the
identifying attribute(s). In the case of a single data set, matches can be determined by sorting on the
identifying attribute and checking if neighboring records match. In both cases, efficient implementations can
be achieved even for large data sets. Unfortunately, without common key attributes or in the presence of
dirty data such straightforward approaches are often too restrictive. To determine most or all matches a
“fuzzy matching” (approximate join) becomes necessary that finds similar records based on a matching rule,
e.g., specified declaratively or implemented by a user-defined function [14][11]. For example, such a rule
could state that person records are likely to correspond if name and portions of the address match. The
degree of similarity between two records, often measured by a numerical value between 0 and 1, usually
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depends on application characteristics. For instance,  different attributes in a matching rule may contribute
different weight to the overall degree of similarity. For string components (e.g., customer name, company
name,…)  exact matching and fuzzy approaches based on wildcards, character frequency, edit distance,
keyboard distance and phonetic similarity (soundex) are useful [11][15][19]. More complex string matching
approaches also considering abbreviations are presented in [23]. A general approach for matching both string
and text data is the use of common information retrieval metrics. WHIRL represents a promising
representative of this category using the cosine distance in the vector-space model for determining the degree
of similarity between text elements [7].

Determining matching instances with such an approach is typically a very expensive operation for large data
sets. Calculating the similarity value for any two records implies evaluation of the matching rule on the
cartesian product of the inputs. Furthermore sorting on the similarity value is needed to determine matching
records covering duplicate information. All records for which the similarity value exceeds a threshold can be
considered as matches, or as match candidates to be confirmed or rejected by the user. In [15] a multi-pass
approach is proposed for instance matching to reduce the overhead. It is based on matching records
independently on different attributes and combining the different match results. Assuming a single input file,
each match pass sorts the records on a specific attribute and only tests nearby records within a certain
window on whether they satisfy a predetermined matching rule. This reduces significantly the number of
match rule evaluations compared to the cartesian product approach. The total set of matches is obtained by
the union of the matching pairs of each pass and their transitive closure.

4 Tool support
A large variety of tools is available on the market to support data transformation and data cleaning tasks, in
particular for data warehousing.1 Some tools concentrate on a specific domain, such as cleaning name and
address data, or a specific cleaning phase, such as data analysis or duplicate elimination. Due to their
restricted domain, specialized tools typically perform very well but must be complemented by other tools to
address the broad spectrum of transformation and cleaning problems. Other tools, e.g., ETL tools, provide
comprehensive transformation and workflow capabilities to cover a large part of the data transformation and
cleaning process. A general problem of ETL tools is their limited interoperability due to proprietary
application programming interfaces (API) and proprietary metadata formats making it difficult to combine
the functionality of several tools [8].

We first discuss tools for data analysis and data rengineering which process instance data to identify data
errors and inconsistencies, and to derive corresponding cleaning transformations. We then present
specialized cleaning tools and ETL tools, respectively.

4.1 Data analysis and reengineering tools

According to our classification in 3.1, data analysis tools can be divided into data profiling and data mining
tools. MIGRATIONARCHITECT (Evoke Software) is one of the few commercial data profiling tools. For each
attribute, it determines the following real metadata: data type, length, cardinality, discrete values and their
percentage, minimum and maximum values, missing values, and uniqueness. MIGRATIONARCHITECT also
assists in developing the target schema for data migration. Data mining tools, such as WIZRULE (WizSoft)
and DATAMININGSUITE (InformationDiscovery), infer relationships among attributes and their values and
compute a confidence rate indicating the number of qualifying rows. In particular, WIZRULE can reveal three
kinds of rules: mathematical formula, if-then rules, and spelling-based rules indicating misspelled names,
e.g., “value Edinburgh appears 52 times in field Customer; 2 case(s) contain similar value(s)”. WIZRULE
also automatically points to the deviations from the set of the discovered rules as suspected errors.

Data reengineering tools, e.g., INTEGRITY (Vality), utilize discovered patterns and rules to specify and
perform cleaning transformations, i.e., they reengineer legacy data. In INTEGRITY, data instances undergo
several analysis steps, such as parsing, data typing, pattern and frequency analysis. The result of these steps
is a tabular representation of field contents, their patterns and frequencies, based on which the pattern for
standardizing data can be selected. For specifying cleaning transformations, INTEGRITY provides a language
including a set of operators for column transformations (e.g., move, split, delete) and row transformation

                                                  
1 For comprehensive vendor and tool listings, see commercial websites, e.g., Data Warehouse Information Center
(www.dwinfocenter.org), Data Management Review (www.dmreview.com), Data Warehousing Institute (www.dw-institute.com)
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(e.g., merge, split). INTEGRITY identifies and consolidates records using a statistical matching technique.
Automated weighting factors are used to compute scores for ranking matches based on which the user can
select the real duplicates.

4.2 Specialized cleaning tools

Specialized cleaning tools typically deal with a particular domain, mostly name and address data, or
concentrate on duplicate elimination. The transformations are to be provided either in advance in the form of
a rule library or interactively by the user. Alternatively, data transformations can automatically be derived
from schema matching tools such as described in [21].

•  Special domain cleaning: Names and addresses are recorded in many sources and typically have high
cardinality. For example, finding customer matches is very important for customer relationship
management. A number of commercial tools, e.g., IDCENTRIC (FirstLogic), PUREINTEGRATE (Oracle),
QUICKADDRESS (QASSystems), REUNION (PitneyBowes), and TRILLIUM (TrilliumSoftware), focus on
cleaning this kind of data. They provide techniques such as extracting and transforming name and
address information into individual standard elements, validating street names, cities, and zip codes, in
combination with a matching facility based on the cleaned data. They incorporate a huge library of pre-
specified rules dealing with the problems commonly found in processing this data. For example,
TRILLIUM’s extraction (parser) and matcher module contains over 200,000 business rules. The tools also
provide facilities to customize or extend the rule library with user-defined rules for specific needs.

•  Duplicate elimination: Sample tools for duplicate identification and elimination include DATACLEANSER
(EDD), MERGE/PURGELIBRARY (Sagent/QMSoftware), MATCHIT (HelpITSystems), and
MASTERMERGE (PitneyBowes). Usually, they require the data sources already be cleaned for matching.
Several approaches for matching attribute values are supported;  tools such as DATACLEANSER and
MERGE/PURGE LIBRARY also allow user-specified matching rules to be integrated.

4.3 ETL tools

A large number of commercial tools support the ETL process for data warehouses in a comprehensive way,
e.g., COPYMANAGER (InformationBuilders), DATASTAGE (Informix/Ardent), EXTRACT (ETI), POWERMART
(Informatica), DECISIONBASE (CA/Platinum), DATATRANSFORMATIONSERVICE (Microsoft), METASUITE
(Minerva/Carleton), SAGENTSOLUTIONPLATFORM (Sagent), and WAREHOUSEADMINISTRATOR (SAS). They
use a repository built on a DBMS to manage all metadata about the data sources, target schemas, mappings,
script programs, etc., in a uniform way. Schemas and data are extracted from operational data sources via
both native file and DBMS gateways as well as standard interfaces such as ODBC and EDA. Data
transformations are defined with an easy-to-use graphical interface. To specify individual mapping steps, a
proprietary rule language and a comprehensive library of predefined conversion functions are typically pro-
vided. The tools also support reusing existing transformation solutions, such as external C/C++ routines, by
providing an interface to integrate them into the internal transformation library. Transformation processing is
carried out either by an engine that interprets the specified transformations at runtime, or by compiled code.
All engine-based tools (e.g., COPYMANAGER, DECISIONBASE, POWERMART, DATASTAGE,
WAREHOUSEADMINISTRATOR), possess a scheduler and support workflows with complex execution
dependencies among mapping jobs. A workflow may also invoke external tools, e.g., for specialized cleaning
tasks such as name/address cleaning or duplicate elimination.

ETL tools typically have little built-in data cleaning capabilities but allow the user to specify cleaning func-
tionality via a proprietary API. There is usually no data analysis support to automatically detect data errors
and inconsistencies. However, users can implement such logic with the metadata maintained and by deter-
mining content characteristics with the help of aggregation functions (sum, count, min, max, median, vari-
ance, deviation,…). The provided transformation library covers many data transformation and cleaning
needs, such as data type conversions (e.g., date reformatting), string functions (e.g., split, merge, replace,
sub-string search), arithmetic, scientific and statistical functions, etc. Extraction of values from free-form
attributes is not completely automatic but the user has to specify the delimiters separating sub-values.

The rule languages typically cover if-then and case constructs that help handling exceptions in data values,
such as misspellings, abbreviations, missing or cryptic values, and values outside of range. These problems
can also be addressed by using a table lookup construct and join functionality. Support for instance matching
is typically restricted to the use of the join construct and some simple string matching functions, e.g., exact
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or wildcard matching and soundex. However, user-defined field matching functions as well as functions for
correlating field similarities can be programmed and added to the internal transformation library.

5 Conclusions
We provided a classification of data quality problems in data sources differentiating between single- and
multi-source and between schema- and instance-level problems. We further outlined the major steps for data
transformation and data cleaning and emphasized the need to cover schema- and instance-related data
transformations in an integrated way. Furthermore, we provided an overview of commercial data cleaning
tools. While the state-of-the-art in these tools is quite advanced, they do typically cover only part of the
problem and still require substantial manual effort or self-programming. Furthermore, their interoperability is
limited (proprietary APIs and metadata representations).

So far only a little research has appeared on data cleaning, although the large number of tools indicates both
the importance and difficulty of the cleaning problem. We see several topics deserving further research. First
of all, more work is needed on the design and implementation of the best language approach for supporting
both schema and data transformations. For instance, operators such as Match, Merge or Mapping
Composition have either been studied at the instance (data) or schema (metadata) level but may be built on
similar implementation techniques. Data cleaning is not only needed for data warehousing but also for query
processing on heterogeneous data sources, e.g., in web-based information systems. This environment poses
much more restrictive performance constraints for data cleaning that need to be considered in the design of
suitable approaches. Furthermore, data cleaning for semi-structured data, e.g., based on XML, is likely to be
of great importance given the reduced structural constraints and the rapidly increasing amount of XML data.
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