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Recap: The Pipeline

Data Collection

Data Processing

Exploratory Analysis

Analysis, Hypothesis Testing, & ML

Insight & Policy Decision



What we’re doing next:

Data Collection

Data Processing

Exploratory Analysis

Analysis, Hypothesis Testing, & ML

Insight & Policy Decision



Motivation

In previous lectures I’ve mentioned things like a “linear model”,
or “statistical model”, but...

1. We skipped how you would make such a model

2. We skipped how you would reason about such a model

3. Now that we know how to get our data in order, it’s time
to really get our hands dirty!
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What Machine Learning is not

Objective.

1. Lots of judgement gets used

2. Lots of heuristics get applied

3. Anyone who tells you differently is trying to sell you
something.
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Let’s flip a coin

Coins/dice are fantastic, we’ll often talk about ‘flipping’ a coin
when it comes to reasoning about probabilities.

1. A coin represents a random variable, v

2. v can have one of two outcomes: Heads (1) and Tails (0)

3. Each v has an associate distribution that gives the
probabilities of v realizing each of its possible values.
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Great Expectations

Each random variable also has an expected value

1. What’s the expected value for a coin?

2. A 10-sided die?

3. Two 6-sided die?

4. Notice anything?



Great Expectations

Each random variable also has an expected value

1. What’s the expected value for a coin?

2. A 10-sided die?

3. Two 6-sided die?

4. Notice anything?



Great Expectations

Each random variable also has an expected value

1. What’s the expected value for a coin?

2. A 10-sided die?

3. Two 6-sided die?

4. Notice anything?



Great Expectations

Each random variable also has an expected value

1. What’s the expected value for a coin?

2. A 10-sided die?

3. Two 6-sided die?

4. Notice anything?



Great Expectations

Each random variable also has an expected value

1. What’s the expected value for a coin?

2. A 10-sided die?

3. Two 6-sided die?

4. Notice anything?



Continuing with distributions

Cons/Dice are discrete distributions, but continuous
distributions are also very important.

Common distributions

1. The Uniform distribution

Defined by an interval

2. The Normal distribution: N (µ, σ2)

Defined by an mean (µ), and its standard deviation (σ)

3. The Binomial distribution: B(n, p)

Defined by an number of yes/no trials (n), and the
probability of ‘yes’ (p)
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Potential Problem?

Take the uniform distribution over [0, 1]

Since in a continuous space there are ∞-many possible points,
within this interval, the probability for any given point is x

∞ ≈ 0

1. Do we pack it up?

2. No, we use calculus!



Potential Problem?

Take the uniform distribution over [0, 1]

Since in a continuous space there are ∞-many possible points,
within this interval, the probability for any given point is x

∞ ≈ 0

1. Do we pack it up?

2. No, we use calculus!



Potential Problem?

Take the uniform distribution over [0, 1]

Since in a continuous space there are ∞-many possible points,
within this interval, the probability for any given point is x

∞ ≈ 0

1. Do we pack it up?

2. No, we use calculus!



The other PDF

We represent a continuous distribution as a probability density
function (PDF):

1. The probability of seeing a value within a certain interval
equals the integral of the density function over that interval

2. “But I hate calculus!”, I hear you say. Okay...
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Speaking in Uniform Code

We’re computer scientists, let’s write some code to gain an
intuition about these things:

For the Uniform distribution:

def uniform_pdf(x: float) -> float:

return 1 if 0 <= x < 1 else 0



Speaking in Normal Code

We’re computer scientists, let’s write some code to gain an
intuition about these things:

For the Normal distribution: To the notebook



PDF to CDF

PDFs are great, but we’re not always asking a question like
“How likely is X”, sometimes we want to ask is the probability
of X less than Y ?

1. For that we have Cumulative density functions!
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Speaking in Uniform Code

For the Uniform distribution:

def uniform_cdf(x: float) -> float:

if x < 0: return 0

elif x < 1: return x

else: return 1



Hypothesis Testing

Now that we have some intuition for PDF vs CDF, we can talk
about testing a hypothesis.

Example hypotheses:

1. Is this coin fair?

2. Data Scientists Prefer Python

3. Student who take class with Prof X are more likely to be
involved in violent events.
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Hypothesis Testing

To be disciplined about it, we need a Null Hypothesis H0.

1. H0 is the ‘default’ position on a question

2. You can have multiple hypoteses H1, H2 . . . for each null
hypothesis.
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Thanks for your time!

:)


