INTRODUCTION TO
DATA SCIENCE

JOHN P DICKERSON

Lecture #24 — 11/14/2019

CMSC320 COMPUTER SCIENCE
Tuesdays & Thursdays
5:00pm - 6:15pm

UNIVERSITY OF MARYLAND

ANNOUNCEMENTS

Project 3 has been extended to next Monday, November 25!
Project 4 will be released by November 21:

» The shortest project by far!

« ADbit of fun — visualizing and analysis geospatial data

Please make sure you’re making progress on the final
tutorial!

* Rubric is posted on the course webpage & on ELMS
* Rubric has linked to 4-5 previous projects | liked a lot!

» Please talk to me and/or the TAs whenever (many have)

MIDTERM

Review Grades for Midterm Old @ REGRADE REQUESTS DISABLED @ GRADES PUBLISHED

MINIMUM MEDIAN MAXIMUM MEAN STD DEV

0.0 38.0 49.0 36.48 8.87

Q2B

(b) Assume a population with an odd number of elements, and a sample with an odd number of elements.
Which of the following is true?

1. If the sample mean is equal to the sample median, then the sample distribution is symmetric.
ii. If the sample mean is equal to the sample median, then the true distribution is symmetric.
ii1. If the sample distribution is symmetric, then the sample mean will be equal to the sample median.

iv. If the true distribution is symmetric, then the sample mean will be equal to the sample median.

(-2,-1,0,0, 3)
(Mean = 0, Median = 0)

Q2D & Q4

(d) Regression estimates the relationship between two (or more) measurements. Which of the following is not
an example of a linear relationship that could be measured well by a basic regression?

1. The number of shoes purchased, given that I buy 1 pair of shoes for every 500 miles I run.

ii. Total dollars spent buying tacos as a function of n, the number of tacos purchased, and p = $1.50, the
price of a taco.

ii1. Total expected calories consumed as a function of a n, the number of tacos, and ¢ = 120, the average
calories in a taco.

iv. The relationship between happiness and number of miles run. If I run less than three miles, I am happy.
If I run between three and six miles, I am sad. If I run more than six miles, I am happy again.

5. [3 pts] Recall term frequency-inverse document frequency (tf-idf). Your table above for Question 4 lists the term
frequencies for each term in each document. Translate that table to its tf-idf representation. You may use the idf
function from class, or define your own, so long as it makes sense.

Q6 - CENTRALITY

6. [4 pts] This is a four-part question, and builds on Question 2c. Indeed, please feel free to reuse the graph from
that question, reproduced below, when describing your answers to the questions below.

Weighted centrality metrics?

Negative weights?

Directed graphs?

(a) We defined centrality measures for undirected, unweighted graphs. A weighted graph associates real-valued
weights with edges. Formally extend normalized degree centrality to weighted, undirected graphs.

(b

-

Next, formally extend either closeness or betweenness centrality to the weighted, undirected setting.

(c

-

Do these centrality measures still make sense if weights on edges can be negative? What about zero-
weight edges? Describe possible problems introduced by negative-/zero-weight edges, or describe why the
measures still work as intended.

d

=

How would centrality metrics change if the graph were directed instead of undirected?

Q8 - TIDY DATA &
Q10 - MULTIPLE IMPUTATION

8. [3 pts] You are in charge of the first autonomous car race, to take place on the mean streets of College Park.
The race has 500 total laps, and you record the lap times for each car, along with other information like the car’s
owner, make, model, et cetera. Not all cars finish the race—for example, a BMW 18 crashed into a wall after its
first lap—so you also record how many laps were completed. Translate the data below into “tidy data.”

Make Model Team Name Laps Completed Lapl Lap2 Lap3 ... Lap500
Tesla ~ SPI00OD OI' Musky 500 1:00 1:01 0:58 ... 1:01
Nissan Leaf Zen Electronica 500 2:02 I:50 155 ... 1:59
BMW i8 Germautonomy 1 0:55 - - cee =

Tesla ~ SPI00D Autobucks 500 1:01 1:01 0:55 ... 1:00
BMW i8 Employee #1 500 0:56 1:01 0:58 ... 0:56

10. [3 pts] Briefly explain the key steps in using multiple imputation to handle missing data.

Incomplete data Pooled results

Impute N times Analysis performed
on each imputed set

TODAY’S LECTURE

Exploratory Analysis, :
Data Data analysis hypothesis Inslog”Ty&

collection processing & testing, &

Data viz ML Decision

SCALING IT UP:
STOCHASTIC GRADIENT
DESCENT (SGD)

RECAP:
GRADIENT DESCENT

Algorithm for any* hypothesis function h9: R™ — y!, loss
function /- , step size (¢ :

unction /: Y x Y — R . step

Initialize the parameter vector:

- 00

Repeat until satisfied (e.g., exact or approximate
convergence):

- Compute gradient: g <
* Update parameters: (g . §

What if m is big?
What if n is big? 8
*must be reasonably well behaved

STOCHASTIC
GRADIENT DESCENT

Algorithm for any* hypothesis function h9: R™ — y!, loss
function /- , step size (¢ :

unction /: Y x Y — R . step

Initialize the parameter vector:

6+ 0

Repeat until satisfied (e.g., exact or approximate
convergence):

Randomly shuffle the input set x

Foriin {1, 2, ... m}, shuffled: ' _
Compute gradient: § <— Veg(he (37(2))7 y(z))
Update parameters: § <— 0 — - g

-
*must be reasonably well behaved

SGD CONTINUED

Can also make use of “mini-batch” stochastic gradient
descent:

« High-level idea: at every outer iteration, shuffle the input data,
then partition into k mini-batches of size m/k

» Perform inner loop of SGD on these mini-batches

Batches reduce variance in update, make use of vectorization
Issues with SGD ?222?2?2?2?22722222?

« Convergence: “almost surely” converges to the global
optimum, assuming convexity and reasonable learning rate

« Batch size: hyperparameter? Not really — figure out how many
examples fit in RAM/GPU memory, then choose the nearest
power of 2 and go with that

« Sensitive to feature scaling (if batching over features)

SCALING IT UP:
BIG DATA & MAPREDUCE

™
F
Thanks to: Jeff Dean, Sanjay Ghemawa, Zico Kolter

My laptop
8GB RAM
500GB Disk

Big data?
No

“Big data”

Google Data Center
?7?7? RAM/Disk
(>> PBs)

Big data?
Yes

Some notable inflection points

1. Your data fits in RAM on a single machine
2. Your data fits on disk on a single machine

3. Your data fits in RAM/disk on a “small” cluster of machines (you don’t
need to worry about machines dying)

4, Your data fits in RAM/disk on a “large” cluster of machine (you need
to worry about machines dying)

It’s probably reasonable to refer to 3+ as “big data”, but many would only
consider 4

Do you have big data?

If your data fits on a single machine (even on disk), then it’s almost always
better to think about how you can design an efficient single-machine
solution, unless you have extremely good reasons for doing otherwise

scalable system cores | twitter | uk-2007-05
GraphChi [10] 2 3160s 6972s
Stratosphere [6] 16 2250s - scalable system cores | twitter | uk-2007-05
X-Stream [17] 16 14388s - Stratosphere [6] 16 950s -
Spark [8] 128 | 857s 1759s X-Stream [17] 16 | 1159s -
Giraph [8] 128 596s 1235s Spark [8] 128 | 1784s > 8000s
GraphLab [8] 128 249s 833s Giraph [8] 128 200s > 8000s
GraphX [8] 128 419s 462s GraphLab [8] 128 242s 714s
Single thread (SSD) 1 300s 651s GraphX [8] 128 251s 800s
Single thread (RAM) | 1 275s - [Single thread (SSD) [1 | 153s | 417s |
Table 2: Reported elapsed times for 20 PageRank it- Table 3: Reported elapsed times for label propa-
erations, compared with measured times for single- gation, compared with measured times for single-
threaded implementations from SSD and from RAM. threaded label propagation from SSD.

GraphChi and X-Stream report times for 5 Page-
Rank iterations, which we multiplied by four.

Tables from [McSherry et al., 2015 “Scalability! But at what COST”]

Distributed computing

Distributed computing rose to prominence in the 70s/80s, often built
around “supercomputing,” for scientific computing applications

1971 — CMU C.mmp 1984 — Cray-2
(16 PDP-11 processors) (4 vector processors)

Message passing interface

A7 P

In Mid-90s, researchers built a common interface for distributed
computing called the message passing interface (MPI)

MPI provided a set of tools to run multiple processes (on a single machine
or across many machines), that could communicate, send data between
each other (all of “scattering”, “gathering”, “broadcasting”), and
synchronize execution

Still common in scientific computing applications and HPC (high
performance computing

10

Downsides to MPI

MPI is extremely powerful but has some notable limitations

1.

MPI is complicated: programs need to explicitly manage data,
synchronize threads, etc

MPI is brittle: if machines die suddenly, can be difficult to recover

(unless explicitly handled by the program, making them more
complicated)

11

A new paradigm for data processing

When Google was building their first data centers, they used clusters of
off-the-shelf commodity hardware; machines had different speeds and
failures were common given cluster sizes

Data itself was distributed (redundantly) over many machines, as much as

possible wanted to do the computation on the machine where the data is
stored

Led to the development of the MapReduce framework at Google
[Ghemawat, 2004], later made extremely popular through the Apache
Hadoop open source implementation

G O«)8 [6 ih =[ajala]o)

12

AN EXAMPLE
PROGRAM

Present the concepts of MapReduce using the “typical example”
of MR, Word Count

* Input: a volume of raw text, of unspecified size (could be KB, MB,
TB, it doesn’t matter!)

« Output: a list of words, and their occurrence count.

(Assume that words are split correctly; ignore capitalization and
punctuation.)

Example:

* The doctor went to the store. =>
- The, 2
* Doctor, 1
« Went, 1
* To, 1

« Store, 1

MAP? REDUCE?

Mappers read in data from the filesystem, and output
(typically) modified data

Reducers collect all of the mappers output on the keys, and
output (typically) reduced data

The outputted data is written to disk

All data is in terms of key-value pairs (“The” = 2)

MAPREDUCE VS
HADOOP

The paper is written by two researchers at Google, and
describes their programming paradigm

Unless you work at Google, or use Google App Engine, you
won’t use it!

Open Source implementation is Hadoop MapReduce
* Not developed by Google
« Started by Yahoo!; now part of Apache

Google’s implementation (at least the one described) is
written in C++

Hadoop is written in Java

MAJOR COMPONENTS
User Components: |

 Mapper Input data
w T\
/

’ Reducer Map worker Map worker
« Combiner (Optional) N o elepars
- Partitioner (Optional) (Shuffle) intermediate data
 Writable(s) (Optional) / l

Map worker | Map phase

Reduce worker Reduce worker Reduce worker | Reduce phase

merged key'-value pairs
System Components: N

Output data

- Master l
* Input Splitter*

* Output Committer*

* * You can use your own if you really want!

<
N

Image source: http://www.ibm.com/developerworks/java/library/I-hadoop-3/index.html

KEY NOTES

Mappers and Reducers are typically single threaded and
deterministic

« Determinism allows for restarting of failed jobs, or speculative
execution

Need to handle more data? Just add more Mappers/Reducers!
* No need to handle multithreaded code

« Since they’re all independent of each other, you can run (almost)
arbitrary number of nodes

Mappers/Reducers run on arbitrary machines. A machine
typically multiple map and reduce slots available to it, typically
one per processor core

Mappers/Reducers run entirely independent of each other
* In Hadoop, they run in separate JVMs

BASIC CONCEPTS

All data is represented in key-value pairs of an arbitrary type
Data is read in from a file or list of files, from distributed FS
Data is chunked based on an input split

« Atypical chunk is 64MB (more or less can be configured depending on
your use case)

Mappers read in a chunk of data
Mappers emit (write out) a set of data, typically derived from its input

Intermediate data (the output of the mappers) is split to a number of
reducers

Reducers receive each key of data, along with ALL of the values
associated with it (this means each key must always be sent to the

same reducer)
« Essentially, <key, set<value>>

Reducers emit a set of data, typically reduced from its input which is
written to disk

DATA FLOW

Reducer 0

<

Master n workers Master

Reducer 1

L S
[

o
N

INPUT SPLITTER

Is responsible for splitting your input into multiple chunks
These chunks are then used as input for your mappers
Splits on logical boundaries. The default is 64MB per chunk

« Depending on what you’re doing, 64MB might be a LOT of
data! You can change it

Typically, you can just use one of the built in splitters, unless
you are reading in a specially formatted file

MAPPER

Reads in input pair <K,V> (a section as split by the input splitter)

Outputs a pair <K’, V’>

Ex. For our Word Count example, with the following input: “The
teacher went to the store. The store was closed; the store opens

in the morning. The store opens at 9am.”

The output would be:

 <The, 1> <teacher, 1> <went, 1> <to, 1> <the, 1> <store, 1>
<the, 1> <store, 1> <was, 1> <closed, 1> <the, 1> <store, 1>
<opens, 1> <in, 1> <the, 1> <morning, 1> <the 1> <store, 1>
<opens, 1> <at, 1> <9am, 1>

REDUCER

Accepts the Mapper output, and collects values on the key
« All inputs with the same key must go to the same reducer!
Input is typically sorted, output is output exactly as is

For our example, the reducer input would be:

« <The, 1> <teacher, 1> <went, 1> <to, 1> <the, 1> <store, 1>
<the, 1> <store, 1> <was, 1> <closed, 1> <the, 1> <store, 1>
<opens, 1> <in, 1> <the, 1> <morning, 1> <the 1> <store, 1>
<opens, 1> <at, 1> <9am, 1>

The output would be:

« <The, 6> <teacher, 1> <went, 1> <to, 1> <store, 3> <was, 1>
<closed, 1> <opens, 1> <morning, 1> <at, 1> <9am, 1>

COMBINER

Essentially an intermediate reducer
* Is optional

Reduces output from each mapper, reducing bandwidth and
sorting

Cannot change the type of its input

* Input types must be the same as output types

OUTPUT COMMITTER

Is responsible for taking the reduce output, and committing it
to a file

Typically, this committer needs a corresponding input splitter
(so that another job can read the input)

Again, usually built in splitters are good enough, unless you
need to output a special kind of file

PARTITIONER
(SHUFFLER)

Decides which pairs are sent to which reducer
Default is simply:
« Key.hashCode() % numOfReducers

User can override to:
* Provide (more) uniform distribution of load between reducers
« Some values might need to be sent to the same reducer

- Ex. To compute the relative frequency of a pair of words
<W1, W2> you would need to make sure all of word W1 are

sent to the same reducer
« Binning of results

MASTER

Responsible for scheduling & managing jobs

Scheduled computation should be close to the data if possible
« Bandwidth is expensive! (and slow)
* This relies on a Distributed File System (e.g. GFS)!

If a task fails to report progress (such as reading input, writing
output, etc), crashes, the machine goes down, etc, it is assumed
to be stuck, and is killed, and the step is re-launched (with the

same input)

The Master is handled by the framework, no user code is
necessary

MAPREDUCE IN
PYTHON

def mapreduce execute(data, mapper, reducer):
values = map(mapper, data)

groups = {}
for items in values:
for k,v in items:
if k not in groups:
groups[k] = [V]
else:
groups[k].append(Vv)

output = [reducer(k,v) for k,v in groups.items()]
return output

MAPREDUCE IN
PYTHON

Don’t do the last slide ...
Python’s mrjob library:
« write mappers and reducers in Python

* Deploy on Hadoop systems, Amazon Elastic MR, Google
Cloud

from mrjob.job import MRJob

class WordOccurrenceCount (MRJob):
def mapper(self, , line):

for word in line.split(" "):
yield word, 1

def reducer(self, key, values):
yield key, sum(values)

MAPREDUCE?

Good:
« All you need to do is write a mapper and a reducer

« Can get away with not exposing any of the internals (data
splitting, locality issues, redundancy, etc) if you're using a
ready-made engine

Bad:

» Lots of reading/writing from disk (in part because this helps
with redundancy)

« Sometimes communication between processes is necessary

» Talk about later: parameter servers, GraphLab aka Dato, etc

NEXT UP:
REVIEW OF HYPOTHESIS TESTING

(AND THEN A BUNCH OF STUFF LIKE
PRIVACY, ETHICS, DEBUGGING DATA
SCIENCE, ETC))

