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ANNOUNCEMENTS
Project 3 has been extended to next Monday, November 25!
Project 4 will be released by November 21:
• The shortest project by far!

• A bit of fun – visualizing and analysis geospatial data

Please make sure you’re making progress on the final 
tutorial!
• Rubric is posted on the course webpage & on ELMS

• Rubric has linked to 4-5 previous projects I liked a lot!

• Please talk to me and/or the TAs whenever (many have)
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MIDTERM
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Q 2B

Counterexample to (i)   ?????
(-2, -1, 0, 0, 3)
(Mean = 0, Median = 0)
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Q 2D    &   Q4
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Q6 - CENTRALITY
Weighted centrality metrics?
Negative weights?
Directed graphs?
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Q8 – TIDY DATA    &    
Q10 – MULTIPLE IMPUTATION
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TODAY’S LECTURE

Data 
collection

Data 
processing

Exploratory 
analysis

&
Data viz

Analysis, 
hypothesis 
testing, & 

ML

Insight & 
Policy 

Decision
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SCALING IT UP:
STOCHASTIC GRADIENT

DESCENT (SGD)
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RECAP:
GRADIENT DESCENT
Algorithm for any* hypothesis function                            , loss 
function                               , step size     :
Initialize the parameter vector:
•

Repeat until satisfied (e.g., exact or approximate 
convergence):
• Compute gradient:
• Update parameters:

10*must be reasonably well behaved

What if m is big?
What if n is big?



STOCHASTIC 
GRADIENT DESCENT
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Algorithm for any* hypothesis function                            , loss 
function                               , step size     :
Initialize the parameter vector:
•

Repeat until satisfied (e.g., exact or approximate 
convergence):
• Randomly shuffle the input set x
• For i in {1, 2, … m}, shuffled:

• Compute gradient:
• Update parameters:

11*must be reasonably well behaved

g  r✓`(h✓(x
(i)), y(i))



SGD CONTINUED
Can also make use of “mini-batch” stochastic gradient 
descent:
• High-level idea: at every outer iteration, shuffle the input data, 

then partition into k mini-batches of size m/k
• Perform inner loop of SGD on these mini-batches
Batches reduce variance in update, make use of vectorization
Issues with SGD      ??????????????
• Convergence: “almost surely” converges to the global 

optimum, assuming convexity and reasonable learning rate
• Batch size: hyperparameter?  Not really – figure out how many 

examples fit in RAM/GPU memory, then choose the nearest 
power of 2 and go with that

• Sensitive to feature scaling (if batching over features)
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SCALING IT UP:
BIG DATA & MAPREDUCE
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Thanks to: Jeff Dean, Sanjay Ghemawa, Zico Kolter
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“Big data”

5

My laptop
8GB RAM

500GB Disk

Big data?
No

Google Data Center 
??? RAM/Disk

(>> PBs)

Big data?
Yes

?
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Some notable inflection points

1. Your data fits in RAM on a single machine

2. Your data fits on disk on a single machine

3. Your data fits in RAM/disk on a “small” cluster of machines (you don’t 
need to worry about machines dying)

4. Your data fits in RAM/disk on a “large” cluster of machine (you need 
to worry about machines dying)

It’s probably reasonable to refer to 3+ as “big data”, but many would only 
consider 4
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Do you have big data?

If your data fits on a single machine (even on disk), then it’s almost always 
better to think about how you can design an efficient single-machine 
solution, unless you have extremely good reasons for doing otherwise
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name twitter rv [11] uk-2007-05 [4]
nodes 41,652,230 105,896,555
edges 1,468,365,182 3,738,733,648
size 5.76GB 14.72GB

Table 1: The “twitter rv” and “uk-2007-05” graphs.

fn PageRank20(graph: GraphIterator, alpha: f32) {

let mut a = Vec::from_elem(graph.nodes, 0f32);

let mut b = Vec::from_elem(graph.nodes, 0f32);

let mut d = Vec::from_elem(graph.nodes, 0u32);

graph.map_edges(|x, y| { d[x] += 1; });

for iter in range(0u, 20u) {

for i in range(0u, graph.nodes) {

b[i] = alpha * a[i] / d[i];

a[i] = 1f32 - alpha;

}

graph.map_edges(|x, y| { a[y] += b[x]; });

}

}

Figure 2: Twenty PageRank iterations.

2 Basic Graph Computations
Graph computation has featured prominently in recent
SOSP and OSDI conferences, and represents one of the
simplest classes of data-parallel computation that is not
trivially parallelized. Conveniently, Gonzalez et al. [8]
evaluated the latest versions of several graph-processing
systems in 2014. We implement each of their tasks using
single-threaded C# code, and evaluate the implementa-
tions on the same datasets they use (see Table 1).1

Our single-threaded implementations use a simple
Boost-like graph traversal pattern. A GraphIterator

type accepts actions on edges, and maps the action across
all graph edges. The implementation uses unbuffered IO
to read binary edge data from SSD and maintains per-
node state in memory backed by large pages (2MB).

2.1 PageRank
PageRank is an computation on directed graphs which it-
eratively updates a rank maintained for each vertex [16].
In each iteration a vertex’s rank is uniformly divided
among its outgoing neighbors, and then set to be the ac-
cumulation of scaled rank from incoming neighbors. A
dampening factor alpha is applied to the ranks, the lost
rank distributed uniformly among all nodes. Figure 2
presents code for twenty PageRank iterations.

1Our C# implementations required some manual in-lining, and are
less terse than our Rust implementations. In the interest of clarity, we
present the latter in this paper. Both versions of the code produce com-
parable results, and will be made available online.

scalable system cores twitter uk-2007-05
GraphChi [10] 2 3160s 6972s
Stratosphere [6] 16 2250s -
X-Stream [17] 16 1488s -
Spark [8] 128 857s 1759s
Giraph [8] 128 596s 1235s
GraphLab [8] 128 249s 833s
GraphX [8] 128 419s 462s
Single thread (SSD) 1 300s 651s
Single thread (RAM) 1 275s -

Table 2: Reported elapsed times for 20 PageRank it-
erations, compared with measured times for single-
threaded implementations from SSD and from RAM.
GraphChi and X-Stream report times for 5 Page-
Rank iterations, which we multiplied by four.

fn LabelPropagation(graph: GraphIterator) {

let mut label = Vec::from_fn(graph.nodes, |x| x);

let mut done = false;

while !done {

done = true;

graph.map_edges(|x, y| {

if label[x] != label[y] {

done = false;

label[x] = min(label[x], label[y]);

label[y] = min(label[x], label[y]);

}

});

}

}

Figure 3: Label propagation.

Table 2 compares the reported times from several
systems against a single-threaded implementations of
PageRank, reading the data either from SSD or from
RAM. Other than GraphChi and X-Stream, which re-
read edge data from disk, all systems partition the graph
data among machines and load it in to memory. Other
than GraphLab and GraphX, systems partition edges by
source vertex; GraphLab and GraphX use more sophisti-
cated partitioning schemes to reduce communication.

No scalable system in Table 2 consistently out-
performs a single thread, even when the single thread
repeatedly re-reads the data from external storage. Only
GraphLab and GraphX outperform any single-threaded
executions, although we will see in Section 3.1 that the
single-threaded implementation outperforms these sys-
tems once it re-orders edges in a manner akin to the par-
titioning schemes these systems use.

2.2 Connected Components
The connected components of an undirected graph are
disjoint sets of vertices such that all vertices within a set
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Tables from [McSherry et al., 2015 “Scalability! But at what COST”]

scalable system cores twitter uk-2007-05
Stratosphere [6] 16 950s -
X-Stream [17] 16 1159s -
Spark [8] 128 1784s � 8000s
Giraph [8] 128 200s � 8000s
GraphLab [8] 128 242s 714s
GraphX [8] 128 251s 800s
Single thread (SSD) 1 153s 417s

Table 3: Reported elapsed times for label propa-
gation, compared with measured times for single-
threaded label propagation from SSD.

are mutually reachable from each other.
In the distributed setting, the most common algorithm

for computing connectivity is label propagation [9] (Fig-
ure 3). In label propagation, each vertex maintains a label
(initially its own ID), and iteratively updates its label to
be the minimum of all its neighbors’ labels and its cur-
rent label. The process propagates the smallest label in
each component to all vertices in the component, and the
iteration converges once this happens in every compo-
nent. The updates are commutative and associative, and
consequently admit a scalable implementation [5].

Table 3 compares the reported running times of la-
bel propagation on several data-parallel systems with a
single-threaded implementation reading from SSD. De-
spite using orders of magnitude less hardware, single-
threaded label propagation is significantly faster than any
system above.

3 Better Baselines
The single-threaded implementations we have presented
were chosen to be the simplest, most direct implementa-
tions we could think of. There are several standard ways
to improve them, yielding single-threaded implementa-
tions which strictly dominate the reported performance
of the systems we have considered, in some cases by an
additional order of magnitude.

3.1 Improving graph layout
Our single-threaded algorithms take as inputs edge itera-
tors, and while they have no requirements on the order in
which edges are presented, the order does affect perfor-
mance. Up to this point, our single-threaded implemen-
tations have enumerated edges in vertex order, whereby
all edges for one vertex are presented before moving
on to the next vertex. Both GraphLab and GraphX in-
stead partition the edges among workers, without requir-
ing that all edges from a single vertex belong to the same

scalable system cores twitter uk-2007-05
GraphLab 128 249s 833s
GraphX 128 419s 462s
Vertex order (SSD) 1 300s 651s
Vertex order (RAM) 1 275s -
Hilbert order (SSD) 1 242s 256s
Hilbert order (RAM) 1 110s -

Table 4: Reported elapsed times for 20 PageRank it-
erations, compared with measured times for single-
threaded implementations from SSD and from RAM.
The single-threaded times use identical algorithms,
but with different edge orders.

worker, which enables those systems to exchange less
data [7, 8].

A single-threaded graph algorithm does not perform
explicit communication, but edge ordering can have a
pronounced effect on the cache behavior. For example,
the edge ordering described by a Hilbert curve [2], akin
to ordering edges (a,b) by the interleaving of the bits
of a and b, exhibits locality in both a and b rather than
just a as in the vertex ordering. Table 4 compares the
running times of single-threaded PageRank with edges
presented in Hilbert curve order against other implemen-
tations, where we see that it improves over all of them.

Converting the graph data to a Hilbert curve order is an
additional cost in pre-processing the graph. The process
amounts to transforming pairs of node identifiers (edges)
into an integer of twice as many bits, sorting these values,
and then transforming back to pairs of node identifiers.
Our implementation transforms the twitter rv graph in
179 seconds using one thread, which can be a perfor-
mance win even if pre-processing is counted against the
running time.

3.2 Improving algorithms
The problem of properly choosing a good algorithm lies
at the heart of computer science. The label propagation
algorithm is used for graph connectivity not because it
is a good algorithm, but because it fits within the “think
like a vertex” computational model [13], whose imple-
mentations scale well. Unfortunately, in this case (and
many others) the appealing scaling properties are largely
due to the algorithm’s sub-optimality; label propagation
simply does more work than better algorithms.

Consider the algorithmic alternative of Union-Find
with weighted union [3], a simple O(m logn) algorithm
which scans the graph edges once and maintains two in-
tegers for each graph vertex, as presented in Figure 4.
Table 5 reports its performance compared with imple-
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Distributed computing

Distributed computing rose to prominence in the 70s/80s, often built 
around “supercomputing,” for scientific computing applications

9

1984 – Cray-2 
(4 vector processors) 

1971 – CMU C.mmp
(16 PDP-11 processors)
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Message passing interface

In mid-90s, researchers built a common interface for distributed 
computing called the message passing interface (MPI)

MPI provided a set of tools to run multiple processes (on a single machine 
or across many machines), that could communicate, send data between 
each other (all of “scattering”, “gathering”, “broadcasting”), and 
synchronize execution

Still common in scientific computing applications and HPC (high 
performance computing

10
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Downsides to MPI

MPI is extremely powerful but has some notable limitations

1. MPI is complicated: programs need to explicitly manage data, 
synchronize threads, etc

2. MPI is brittle: if machines die suddenly, can be difficult to recover 
(unless explicitly handled by the program, making them more 
complicated)

11
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A new paradigm for data processing

When Google was building their first data centers, they used clusters of 
off-the-shelf commodity hardware; machines had different speeds and 
failures were common given cluster sizes

Data itself was distributed (redundantly) over many machines, as much as 
possible wanted to do the computation on the machine where the data is 
stored

Led to the development of the MapReduce framework at Google 
[Ghemawat, 2004], later made extremely popular through the Apache 
Hadoop open source implementation

12



AN EXAMPLE 
PROGRAM
Present the concepts of MapReduce using the “typical example” 
of MR, Word Count
• Input: a volume of raw text, of unspecified size (could be KB, MB, 

TB, it doesn’t matter!)
• Output: a list of words, and their occurrence count.
(Assume that words are split correctly; ignore capitalization and 
punctuation.)
Example:
• The doctor went to the store. =>

• The, 2
• Doctor, 1
• Went, 1
• To, 1
• Store, 1
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MAP? REDUCE?
Mappers read in data from the filesystem, and output 
(typically) modified data

Reducers collect all of the mappers output on the keys, and 
output (typically) reduced data

The outputted data is written to disk

All data is in terms of key-value pairs   (“The” à 2)

22



MAPREDUCE VS
HADOOP
The paper is written by two researchers at Google, and 
describes their programming paradigm
Unless you work at Google, or use Google App Engine, you 
won’t use it!  (And even then, you might not.)
Open Source implementation is Hadoop MapReduce
• Not developed by Google
• Started by Yahoo!; now part of Apache

Google’s implementation (at least the one described) is 
written in C++
Hadoop is written in Java

23



MAJOR COMPONENTS
User Components:

• Mapper
• Reducer
• Combiner (Optional)
• Partitioner (Optional) (Shuffle)
• Writable(s) (Optional)

System Components:
• Master
• Input Splitter*
• Output Committer*
• * You can use your own if you really want!

Image source: http://www.ibm.com/developerworks/java/library/l-hadoop-3/index.html 24



KEY NOTES
Mappers and Reducers are typically single threaded and 
deterministic
• Determinism allows for restarting of failed jobs, or speculative 

execution
Need to handle more data? Just add more Mappers/Reducers!
• No need to handle multithreaded code
• Since they’re all independent of each other, you can run (almost) 

arbitrary number of nodes
Mappers/Reducers run on arbitrary machines. A machine 
typically multiple map and reduce slots available to it, typically 
one per processor core
Mappers/Reducers run entirely independent of each other
• In Hadoop, they run in separate JVMs

25



BASIC CONCEPTS
All data is represented in key-value pairs of an arbitrary type
Data is read in from a file or list of files, from distributed FS
Data is chunked based on an input split
• A typical chunk is 64MB (more or less can be configured depending on 

your use case)
Mappers read in a chunk of data
Mappers emit (write out) a set of data, typically derived from its input
Intermediate data (the output of the mappers) is split to a number of 
reducers
Reducers receive each key of data, along with ALL of the values 
associated with it (this means each key must always be sent to the 
same reducer)
• Essentially, <key, set<value>>
Reducers emit a set of data, typically reduced from its input which is 
written to disk

26



DATA FLOW

Mapper 2

Mapper 0

Mapper 1

Reducer 0

Reducer 1

Out 
0

Out 
1

In
pu

t

Split 2

Split 1

Split 0
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Master Mastern workers



INPUT SPLITTER
Is responsible for splitting your input into multiple chunks
These chunks are then used as input for your mappers
Splits on logical boundaries. The default is 64MB per chunk
• Depending on what you’re doing, 64MB might be a LOT of 

data! You can change it

Typically, you can just use one of the built in splitters, unless 
you are reading in a specially formatted file

28



MAPPER
Reads in input pair <K,V> (a section as split by the input splitter)

Outputs a pair <K’, V’>

Ex. For our Word Count example, with the following input: “The 
teacher went to the store. The store was closed; the store opens 
in the morning. The store opens at 9am.”

The output would be:
• <The, 1> <teacher, 1> <went, 1> <to, 1> <the, 1> <store, 1> 

<the, 1> <store, 1> <was, 1> <closed, 1> <the, 1> <store, 1> 
<opens, 1> <in, 1> <the, 1> <morning, 1> <the 1> <store, 1> 
<opens, 1> <at, 1> <9am, 1>
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REDUCER
Accepts the Mapper output, and collects values on the key
• All inputs with the same key must go to the same reducer!

Input is typically sorted, output is output exactly as is
For our example, the reducer input would be:
• <The, 1> <teacher, 1> <went, 1> <to, 1> <the, 1> <store, 1> 

<the, 1> <store, 1> <was, 1> <closed, 1> <the, 1> <store, 1> 
<opens, 1> <in, 1> <the, 1> <morning, 1> <the 1> <store, 1> 
<opens, 1> <at, 1> <9am, 1>

The output would be:
• <The, 6> <teacher, 1> <went, 1> <to, 1> <store, 3> <was, 1> 

<closed, 1> <opens, 1> <morning, 1> <at, 1> <9am, 1>
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COMBINER
Essentially an intermediate reducer
• Is optional

Reduces output from each mapper, reducing bandwidth and 
sorting
Cannot change the type of its input
• Input types must be the same as output types
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OUTPUT COMMITTER
Is responsible for taking the reduce output, and committing it 
to a file

Typically, this committer needs a corresponding input splitter 
(so that another job can read the input)

Again, usually built in splitters are good enough, unless you 
need to output a special kind of file
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PARTITIONER 
(SHUFFLER)
Decides which pairs are sent to which reducer
Default is simply:
• Key.hashCode() % numOfReducers

User can override to:
• Provide (more) uniform distribution of load between reducers
• Some values might need to be sent to the same reducer

• Ex. To compute the relative frequency of a pair of words 
<W1, W2> you would need to make sure all of word W1 are 
sent to the same reducer

• Binning of results
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MASTER
Responsible for scheduling & managing jobs

Scheduled computation should be close to the data if possible
• Bandwidth is expensive! (and slow)
• This relies on a Distributed File System (e.g. GFS)!

If a task fails to report progress (such as reading input, writing 
output, etc), crashes, the machine goes down, etc, it is assumed 
to be stuck, and is killed, and the step is re-launched (with the 
same input)

The Master is handled by the framework, no user code is 
necessary
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MAPREDUCE IN 
PYTHON

35

def mapreduce_execute(data, mapper, reducer):
values = map(mapper, data)

groups = {}
for items in values:

for k,v in items:
if k not in groups:

groups[k] = [v]
else:

groups[k].append(v)

output = [reducer(k,v) for k,v in groups.items()] 
return output



MAPREDUCE IN 
PYTHON
Don’t do the last slide …
Python’s mrjob library:

• write mappers and reducers in Python

• Deploy on Hadoop systems, Amazon Elastic MR, Google 
Cloud

36

from mrjob.job import MRJob

class WordOccurrenceCount(MRJob):
def mapper(self, _, line):

for word in line.split(" "):
yield word, 1

def reducer(self, key, values):
yield key, sum(values)



MAPREDUCE?
Good:
• All you need to do is write a mapper and a reducer

• Can get away with not exposing any of the internals (data 
splitting, locality issues, redundancy, etc) if you’re using a 
ready-made engine

Bad:
• Lots of reading/writing from disk (in part because this helps 

with redundancy)
• Sometimes communication between processes is necessary

• Talk about later: parameter servers, GraphLab aka Dato, etc
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NEXT UP:
REVIEW OF HYPOTHESIS TESTING

(AND THEN A BUNCH OF STUFF LIKE 
PRIVACY, ETHICS, DEBUGGING DATA 

SCIENCE, ETC!)
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